The story of how Gorilla Glass came to be  SEP 24 2012

Gorilla Glass is the thin strong glass used for the screens of most smartphones. It was invented in the 1960s by Corning but was shelved in the early 1970s due to a lack of demand. The iPhone brought it out of retirement in a big way.

Chemical strengthening, the method of fortifying glass developed in the '60s, creates a compressive layer too, through something called ion exchange. Aluminosilicate compositions like Gorilla Glass contain silicon dioxide, aluminum, magnesium, and sodium. When the glass is dipped in a hot bath of molten potassium salt, it heats up and expands. Both sodium and potassium are in the same column on the periodic table of elements, which means they behave similarly. The heat from the bath increases the migration of the sodium ions out of the glass, and the similar potassium ions easily float in and take their place. But because potassium ions are larger than sodium, they get packed into the space more tightly. (Imagine taking a garage full of Fiat 500s and replacing most of them with Chevy Suburbans.) As the glass cools, they get squeezed together in this now-cramped space, and a layer of compressive stress on the surface of the glass is formed. (Corning ensures an even ion exchange by regulating factors like heat and time.) Compared with thermally strengthened glass, the "stuffing" or "crowding" effect in chemically strengthened glass results in higher surface compression (making it up to four times as strong), and it can be done to glass of any thickness or shape.

I did glass research in college so I'm a sucker for this sort of thing. (via @joeljohnson)

Read more posts on kottke.org about:
glass   Gorilla glass   physics   science

this is kottke.org

   Front page
   About + contact
   Site archives

You can follow kottke.org on Twitter, Facebook, Tumblr, Feedly, or RSS.

Ad from The Deck

We Work Remotely

 

Enginehosting

Hosting provided EngineHosting