homeabout kottke.orgarchives + tagsmembership!
aboutarchives + tagsmembership!
aboutarchivesmembers!

kottke.org posts about science

Feathered dinosaur tail trapped in amber

posted by Jason Kottke   Dec 09, 2016

Dino Amber

Paleontologist Lida Xing found the feathered tail of a tiny dinosaur trapped in a piece of amber for sale at a market in Myanmar.

As soon as Xing saw it, he knew it wasn’t a plant. It was the delicate, feathered tail of a tiny dinosaur.

“I have studied paleontology for more than 10 years and have been interested in dinosaurs for more than 30 years. But I never expected we could find a dinosaur in amber. This may be the coolest find in my life,” says Xing, a paleontologist at China University of Geosciences in Beijing. “The feathers on the tail are so dense and regular, this is really wonderful.”

We Work Remotely

Carl Sagan explains the fourth dimension

posted by Jason Kottke   Dec 06, 2016

From his seminal TV program Cosmos, Carl Sagan attempts to explain the fourth dimension of spacetime. The story starts with Edwin Abbott’s Flatland, but Sagan being Sagan, his explanation is especially lucid.

The Map of Physics

posted by Jason Kottke   Dec 01, 2016

In this video, physicist Dominic Walliman explains how all of the various disciplines of physics are related to each other by arranging them on a giant map. He starts with the three main areas — classical physics, quantum mechanics, and relativity — and then gets into the more specific subjects like optics, electromagnetism, and particle physics before venturing across The Chasm of Ignorance (dun dun DUN!) where things like string theory and dark matter dwell.

Posters of The Map of Physics are available.

Evolution at work: ivory poaching and tuskless elephants

posted by Jason Kottke   Nov 29, 2016

Tuskless Elephants

Poachers in Africa in search of the biggest ivory tusks have altered the gene pool of African elephants in the process.

In Gorongosa National Park in Mozambique, 90 per cent of elephants were slaughtered between 1977 and 1992, during the country’s civil war. Dr Poole said that because poachers disproportionately targeted tusked animals, almost half the females over 35 years of age have no tusks, and although poaching is now under control and the population is recovering well, they are passing the tuskless gene down to their daughters: 30 per cent of female elephants born since the end of the war also do not have tusks.

“Females who are tuskless are more likely to produce tuskless offspring,” she said.

(via mr)

Five Steps to Tyranny

posted by Jason Kottke   Nov 23, 2016

In 2000, the BBC broadcast an hour-long documentary called Five Steps to Tyranny, a look at how ordinary people can do monstrous things in the presence of authority.

Horrific things happen in the world we live in. We would like to believe only evil people carry out atrocities. But tyrannies are created by ordinary people, like you and me.

[Colonel Bob Stewart:] “I’d never been to the former Yugoslavia before in my life, so what actually struck me about the country was how beautiful it was, how nice people were, and yet how ghastly they could behave.”

The five steps are:

  1. “us” and “them” (prejudice and the formation of a dominant group)
  2. obey orders (the tendency to follow orders, especially from those with authority)
  3. do “them” harm (obeying an authority who commands actions against our conscience)
  4. “stand up” or “stand by” (standing by as harm occurs)
  5. exterminate (the elimination of the “other”)

To illustrate each step, the program uses social psychology experiments and explorations like Jane Elliott’s blue eyes/brown eyes exercise on discrimination, the Stanford prison experiment conducted by Philip Zimbardo (who offers commentary throughout the program), and experiments by Stanley Milgram on obedience, including his famous shock experiment, in which a participant (the “teacher”) is directed to shock a “learner” for giving incorrect answers.

The teacher is told to administer an electric shock every time the learner makes a mistake, increasing the level of shock each time. There were 30 switches on the shock generator marked from 15 volts (slight shock) to 450 (danger — severe shock).

The “learners” were in on the experiment and weren’t actually shocked but were told to react as if they were. The results?

65% (two-thirds) of participants (i.e. teachers) continued to the highest level of 450 volts. All the participants continued to 300 volts.

The program also shows how real-life tyrannies have developed in places like Rwanda, Burma, and Bosnia. From a review of the show in The Guardian:

But there is no doubt about the programme’s bottom line: tyrannies happen because ordinary people are surprisingly willing to do tyranny’s dirty work.

Programmes like this can show such things with great vividness — and there is news footage from Bosnia, or from Rwanda, or from Burma to back it up with terrible clarity. It isn’t clear why the majority is so often compliant, but the implication is that democracy should always be grateful to the protesters, the members of the awkward squad, the people who challenge authority.

But don’t take it for granted that the awkward squad must be a force for good: in Germany, in the 1920s, Hitler was an outsider, a protester, a member of the awkward squad. When he came to power in 1932, he found that German medical professors and biologists had already installed a racial ideology for him, one which had already theorised about the elimination of sick or disabled German children, and the rejection of Jewish professionals as agents of pollution.

Zimbardo himself offers this final word in the program:

For me the bottom line message is that we could be led to do evil deeds. And what that means is to become sensitive to the conditions under which ordinary people can do these evil deeds — what we have been demonstrating throughout this program — and to take a position of resisting tyranny at the very first signs of its existence.

NASA’s analysis of seemingly impossible engine: it works

posted by Jason Kottke   Nov 21, 2016

EM Drive NASA

NASA has published their highly anticipated and peer-reviewed analysis of the EM Drive and they’ve concluded the engine works despite appearing to violate Newton’s third law of motion.

In case you’ve missed the hype, the EM Drive, or Electromagnetic Drive, is a propulsion system first proposed by British inventor Roger Shawyer back in 1999.

Instead of using heavy, inefficient rocket fuel, it bounces microwaves back and forth inside a cone-shaped metal cavity to generate thrust.

According to Shawyer’s calculations, the EM Drive could be so efficient that it could power us to Mars in just 70 days.

But, there’s a not-small problem with the system. It defies Newton’s third law, which states that everything must have an equal and opposite reaction.

According to the law, for a system to produce thrust, it has to push something out the other way. The EM Drive doesn’t do this.

Yet in test after test it continues to work. Last year, NASA’s Eagleworks Laboratory team got their hands on an EM Drive to try to figure out once and for all what was going on.

There’s a lot of skepticism around this project, but NASA’s review is definitely a boost to the EM Drive’s credibility.

Update: Just to reiterate, even with this latest paper, there is still skepticism about the EM Drive.

In the end, we can’t conclude that this is a null result, nor can we excitedly say that it works. The sad truth is that this paper is not much better than the researchers’ last one, and it doesn’t actually have enough detail to let us fully evaluate the data. Nor does the paper have enough data to allow a conclusion in the absence of a model. And despite mention of a model in the paper, any model that exists is very well hidden.

Also a clue that the science isn’t quite there on this one yet: very few mainstream science outlets covered this. When the NY Times picks this up and gets prominent physicists on the record about the thruster’s promise, that’s when you’ll know something’s up. Until then, remain skeptical. (via @paudo)

The last steps on the Moon

posted by Jason Kottke   Nov 18, 2016

In May of 1961, President John F. Kennedy told Congress and the rest of the American public that the US was going to send a man to the Moon. Just over 11 years later, as part of the Apollo 17 mission in December 1972, humans set foot on the Moon for the last time.1 The Last Steps is a summary of that final mission, during which NASA accomplished the near-impossible yet again and was met with increasing public indifference about a journey that had taken on the ease of a car trip to grandma’s house.

Update: Perhaps humans will set foot on the Moon sooner than 2060. The European Space Agency is planning on a manned mission “by 2030” and China is shooting for 2036. (via @T_fabriek)

  1. For now, I guess I should add. It’s been 44 years since then and at the rate things are going, it might be another 44 years before it happens again. I’m hoping for a reboot of the Apollo franchise sooner rather than later, though.

Global weirding continues with massive Arctic warm-up

posted by Jason Kottke   Nov 18, 2016

Arctic Warming 2016

Something is rotten to the north of Denmark. Climate scientists are alarmed at the extreme warmth in the Arctic right now. It’s currently dark up there 24 hours a day, which usually means cold temperatures and rapidly freezing ice. Instead, temperatures are risingArctic temps are currently a whopping 36°F above normal.

“The Arctic warmth is the result of a combination of record-low sea-ice extent for this time of year, probably very thin ice, and plenty of warm/moist air from lower latitudes being driven northward by a very wavy jet stream.”

Francis has published research suggesting that the jet stream, which travels from west to east across the Northern Hemisphere in the mid-latitudes, is becoming more wavy and elongated as the Arctic warms faster than the equator does.

“It will be fascinating to see if the stratospheric polar vortex continues to be as weak as it is now, which favors a negative Arctic Oscillation and probably a cold mid/late winter to continue over central and eastern Asia and eastern North America. The extreme behavior of the Arctic in 2016 seems to be in no hurry to quit,” Francis continued.

Is 2017 the year the Arctic finally loses most of the ice cap during the summer?

New radar kit can recognize objects and material

posted by Jason Kottke   Nov 07, 2016

Soli is a newish project by Google described as “a new sensing technology that uses miniature radar to detect touchless gesture interactions”. It’s pretty cool. A group at The University of St. Andrews has found another potentially more amazing use for the sensor: recognizing specific objects and materials.

RadarCat (Radar Categorization for Input & Interaction) is a small, versatile radar-based system for material and object classification which enables new forms of everyday proximate interaction with digital devices. In this work we demonstrate that we can train and classify different types of objects which we can then recognize in real time. Our studies include everyday objects and materials, transparent materials and different body parts. Our videos demonstrate four working examples including a physical object dictionary, painting and photo editing application, body shortcuts and automatic refill based on RadarCat.

More simply put, if you put an orange on the sensor, it knows it’s an orange…and the system can learn new objects as well. It’s a barcode scanner without barcodes. Watch the video…you’ll get the idea pretty quickly.

The Foldscope: a paper microscope that costs $1

posted by Jason Kottke   Nov 01, 2016

Stanford biophysicist Manu Prakash is the inventor of the Foldscope, a small microscope that folds like origami, costs around a dollar, and provides “700 nanometer imaging”. Watch the video for examples — 700 nm is very small and the level of detail is incredible. Why do this? Prakash says:

It’s not just for scientists to figure out how the world works…We all start by being curious about the world. We are born with this and we really need to culture this, because fundamentally curiosity needs to be nurtured and kept alive forever.

You can read more about the Foldscope at the New Yorker or watch Prakash’s TED Talk.

He calls it the Foldscope, and it comes in a kit. (Mine arrived in a nine-by-twelve-inch envelope.) The paper is printed with botanical illustrations and perforated with several shapes, which can be punched out and, with a series of origami-style folds, woven together into a single unit. The end result is about the size of a bookmark. The lens — a speck of plastic, situated in the center — provides a hundred and forty times magnification. The kit includes a second lens, of higher magnification, and a set of stick-on magnets, which can be used to attach the Foldscope to a smartphone, allowing for easy recording of a sample with the phone’s camera. I put my kit together in fifteen minutes, and when I popped the lens into place it was with the satisfaction of spreading the wings of a paper crane.

You can’t currently buy a Foldscope but the website says that their Kickstarter campaign launches sometime this month, so stay tuned for that.

Update: You can now get your very own Foldscope on Kickstarter.

AIDS and the myth of Patient Zero

posted by Jason Kottke   Oct 31, 2016

Some recent genetic testing of the blood of AIDS patients has determined that the strain of HIV responsible for the majority of the AIDS cases in the US spread from Zaire to Haiti around 1967, from Haiti to NYC around 1971, and from there to San Francisco around 1976 and that Gaétan Dugas (aka Patient Zero) was not responsible for setting the epidemic in motion.

The strain of H.I.V. responsible for almost all AIDS cases in the United States, which was carried from Zaire to Haiti around 1967, spread from there to New York City around 1971, researchers concluded in the journal Nature. From New York, it spread to San Francisco around 1976.

The new analysis shows that Mr. Dugas’s blood, sampled in 1983, contained a viral strain already infecting men in New York before he began visiting gay bars in the city after being hired by Air Canada in 1974.

The researchers also reported that originally, Mr. Dugas was not even called Patient Zero — in an early epidemiological study of cases, he was designated Patient O, for “outside Southern California,” where the study began. The ambiguous circular symbol on a chart was later read as a zero, stoking the notion that blame for the epidemic could be placed on one man.

The worms that grow their own food

posted by Jason Kottke   Oct 27, 2016

A species of worm in the north-east Atlantic has been observed farming. They plant grass seeds in their burrows and feed on the sprouts when they start growing.

Ragworms (Hediste diversicolor) were thought to consume the seeds of cordgrass, an abundant plant in the coastal habitats where they live. But the seeds have a tough husk, so it was a mystery how the worms could access the edible interior.

Zhenchang Zhu at the Royal Netherlands Institute for Sea Research in Yerseke and his team have now discovered the worms’ surprising trick: they bury the seeds and wait for them to germinate, later feeding on the juicy sprouting shoots.

I, for one, welcome our new farming worm overlords.

The Most Efficient Way to Destroy the Universe

posted by Jason Kottke   Oct 24, 2016

Kurzgesagt shares a speculative bit of physics called vacuum decay that could very efficiently erase the entire Universe.

To understand vacuum decay, you need to consider the Higgs field that permeates our Universe. Like an electric field, the Higgs field varies in strength, based on its potential. Think of the potential as a track on which a ball is rolling. The higher it is on the track, the more energy the ball has.

The Higgs potential determines whether the Universe is in one of two states: a true vacuum, or a false vacuum. A true vacuum is the stable, lowest-energy state, like sitting still on a valley floor. A false vacuum is like being nestled in a divot in the valley wall — a little push could easily send you tumbling. A universe in a false vacuum state is called “metastable”, because it’s not actively decaying (rolling), but it’s not exactly stable either.

There are two problems with living in a metastable universe. One is that if you create a high enough energy event, you can, in theory, push a tiny region of the universe from the false vacuum into the true vacuum, creating a bubble of true vacuum that will then expand in all directions at the speed of light. Such a bubble would be lethal.

Such a process could already be underway, but don’t worry:

But even if one or multiple spheres of death have already started expanding, the Universe is so big they might not reach us for billions of years.

How the Cretaceous coastline of North America affects US presidential elections

posted by Jason Kottke   Oct 20, 2016

2012 Election Map

That’s a portion of the 2012 US Presidential election map of the southern states broken down by county: blue ones went Barack Obama’s way and counties in red voted for Mitt Romney.

But let’s go back to the Cretaceous Period, which lasted from 145 million years ago to 65 million years ago. Back then, the coastline of what is now North America looked like this:

Cretaceous Coast

Along that ancient coastline of a shallow sea, plankton with carbonate skeletons lived and died in massive numbers, accumulating into large chalk formations on the bottom of the sea. When the sea level dropped and the sea drained through the porous chalk, rich bands of soil were left right along the former coastline. When that area was settled and farmed in the 19th century, that rich soil was perfect for growing cotton. And cotton production was particularly profitable, so slaves were heavily used in those areas.

McClain, quoting from Booker T. Washington’s autobiography, Up From Slavery, points out: “The part of the country possessing this thick, dark and naturally rich soil was, of course, the part of the South where the slaves were most profitable, and consequently they were taken there in the largest numbers.” After the Civil War, a lot of former slaves stayed on this land, and while many migrated North, their families are still there.

The counties in which slave populations were highest before the Civil War are still home to large African American populations, which tend to vote for Democratic presidential candidates, even as the whiter counties around them vote for Republicans. The voting pattern of those counties on the map follows the Cretaceous coastline of 100 million years ago — the plankton fell, the cotton grew, the slaves bled into that rich soil, and their descendants later helped a black man reach the White House.

DNA evidence: humans are still evolving

posted by Jason Kottke   Oct 19, 2016

Jerry Coyne, University of Chicago professor and author of Why Evolution is True, shares the results of a recent paper called Detection of human adaptation during the past 2000 years. In the study, DNA sequencing was used to find human genes that have changed so quickly in the past 2000 years that the authors conclude natural selection must be responsible.

Now, however, we can, by DNA sequencing, look at DNA directly, and with some fancy statistical footwork, get an idea of which genes have changed in frequency so fast that they must have been due to positive natural selection. That’s the subject of a new paper in Science by Yair Field et al. (reference and free download below). The authors conclude that several traits, including lactose tolerance, hair and eye color, and parts of the immune system, as well as height, have evolved within the last 2,000 years.

Other genes that might have changed during that period include those for infant head circumference, insulin levels, birth weight, and female hip size.

Scientists accidentally discover a process to turn CO2 into fuel

posted by Jason Kottke   Oct 19, 2016

Scientists at Oak Ridge National Laboratory have stumbled upon a process that uses “nanospikes” to turn carbon dioxide into ethanol, a common fuel.

This process has several advantages when compared to other methods of converting CO2 into fuel. The reaction uses common materials like copper and carbon, and it converts the CO2 into ethanol, which is already widely used as a fuel.

Perhaps most importantly, it works at room temperature, which means that it can be started and stopped easily and with little energy cost. This means that this conversion process could be used as temporary energy storage during a lull in renewable energy generation, smoothing out fluctuations in a renewable energy grid.

This sounds like a big deal…is it now possible to limit the effects of climate change by sinking carbon while also placing less dependence on fossil fuels? Here’s the Oak Ridge press release. That this news is almost a week old already and we haven’t heard more about it makes me a bit skeptical as to the true importance of it. (Of course, CRISPR is potentially a massive deal and we don’t hear about it nearly enough so…)

Update: A relevant series of tweets from Eric Hittinger on “why creating ethanol from CO2 cannot solve our energy or climate problems”. Wasn’t fully awake when I posted this apparently because, yeah, duh. (via @leejlh)

A well-designed reissue of Newton’s Principia

posted by Jason Kottke   Oct 18, 2016

Newton Principia

Small Spanish publisher Kronecker Wallis is doing a Kickstarter campaign to print a well-designed version of Isaac Newton’s Principia, one of the most important texts in science.

We have spent several months working on a desire. The desire to have a new edition of Isaac Newton’s Principia in our hands that is on a par with the importance of the text and of modern editorial design. To put it back on our shelves so that we can leaf through it from time to time and feel the pages beneath our fingers.

An opportunity has now arisen. Taking advantage of the fact that the original publication is to celebrate its 330th anniversary in 2017, we wish to republish it with an editorial design that pays attention to every last detail.

I am enjoying this trend of reviving old classics through the lens of modern design and packaging; see also the NYCTA Graphics Standards Manual, the NASA Graphics Standards Manual, and the Voyager Golden Record.

The Earth and I

posted by Jason Kottke   Oct 18, 2016

Earth And I

From James Lovelock, The Earth and I is a look at our planet and the living things on it…how Earth came to be, what we understand about our planet, and how we live today. Lisa Randall, Martin Rees, Edward O. Wilson, and Eric Kandel have contributed writing to the book.

The Universe has 10 times more galaxies than we thought

posted by Jason Kottke   Oct 17, 2016

Hubble Ultra Deep Field

A recent paper claims that the Universe has 10 times more galaxies than we previously thought: an estimated 2 trillion galaxies covering every single patch of sky visible from the Earth. But that doesn’t mean the Universe is more massive or that it contains more stars. Phil Plait explains:

Now, let me be clear. This doesn’t meant the Universe is ten times bigger than we thought, or there are ten times as many stars. I’ll explain — I mean, duh, it’s what I do — but to cut to the chase, what they found is that there are lots of teeny, faint galaxies very far away that have gone undetected. So instead of being in a smaller number of big galaxies, stars are divvied up into a bigger number of smaller ones.

So how many stars are there in the Universe? The Milky Way contains about 400 billion stars. Some massive elliptical galaxies house more than 100 trillion stars. Estimates of the total number are rough, but it’s probably around 10^24 stars…that’s a septillion stars, a trillion trillion. It’s absurd that we’d be the only planet in the Universe with life on it.

Richard Feynman’s Tiny Machines

posted by Jason Kottke   Oct 06, 2016

In 1959, physicist Richard Feynman, who had already done work that would win him the Nobel Prize a few years later, gave a talk at Caltech that didn’t have much to do with his main areas of study. The talk was called There’s Plenty of Room at the Bottom and it was a scientist at the peak of his formidable powers asking a question of the scientific community: What about nanotechnology?

I would like to describe a field, in which little has been done, but in which an enormous amount can be done in principle. This field is not quite the same as the others in that it will not tell us much of fundamental physics (in the sense of, “What are the strange particles?”) but it is more like solid-state physics in the sense that it might tell us much of great interest about the strange phenomena that occur in complex situations. Furthermore, a point that is most important is that it would have an enormous number of technical applications.

Even though he made no formal contribution to the field, Feynman’s talk has been credited with jumpstarting interest in the study of nanotechnology. No recording exists of the original talk, but in 1984, Feynman gave a talk he called Tiny Machines, in which he recalled his original talk and spoke of the progress that had been made over the past 25 years. (via @ptak)

Zoomable tree of all life on Earth

posted by Jason Kottke   Oct 04, 2016

Zooming Tree Of Life

OneZoom is an interactive zoomable map of “the evolutionary relationships between the species on our planet”, aka tree of life. Browsing around is fun, but you’ll want to use the search function to find specific groups and animals, like mammals, humans, and mushrooms. The scale of this is amazing…there are dozens of levels of zoom. (via @pomeranian99)

How German physicists reacted to the Hiroshima bomb

posted by Jason Kottke   Oct 03, 2016

During World War II, a group of scientists led by Werner Heisenberg worked on designing a nuclear weapon for Nazi Germany. They were, thankfully, unsuccessful. After the war, the Allies detained ten German scientists in England for six months. Hoping to learn about the German bomb program, they secretly taped the scientists’ conversations. In August 1945, the scientists were told about the US dropping a nuclear bomb on Japan. Here’s a transcript of the resulting reaction and conversation.

Shortly before dinner on the 6th August I informed Professor HAHN that an announcement had been made by the B.B.C. that an atomic bomb had been dropped. HAHN was completely shattered by the news and said that he felt personally responsible for the deaths of hundreds of thousands of people, as it was his original discovery which had made the bomb possible. He told me that he had originally contemplated suicide when he realized the terrible potentialities of his discovery and he felt that now these had been realized and he was to blame. With the help of considerable alcoholic stimulant he was calmed down and we went down to dinner where he announced the news to the assembled guests.

“Professor HAHN” is Otto Hahn, who co-discovered nuclear fission in Germany right before the war and won the 1944 Nobel Prize in Chemistry for it. The rest of the world may have gotten there eventually, but think of how different the war (and resulting Cold War period) would have been if Germany had sequestered their scientific progress a couple years earlier or if Hahn and Lise Meitner had made the discovery a year or two later.

WEIZSÄCKER: I think it’s dreadful of the Americans to have done it. I think it is madness on their part.

HEISENBERG: One can’t say that. One could equally well say “That’s the quickest way of ending the war.”

HAHN: That’s what consoles me.

HAHN: I was consoled when, I believe it was WEIZSÄCKER said that there was now this uranium - I found that in my institute too, this absorbing body which made the thing impossible consoled me because when they said at one time one could make bombs, I was shattered.

WEIZSÄCKER: I would say that, at the rate we were going, we would not have succeeded during this war.

HAHN: Yes.

WEIZSÄCKER: It is very cold comfort to think that one is personally in a position to do what other people would be able to do one day.

I particularly like Heisenberg’s distinction between between theoretical and applied science:

There is a great difference between discoveries and inventions. With discoveries one can always be skeptical and many surprises can take place. In the case of inventions, surprises can really only occur for people who have not had anything to do with it. It’s a bit odd after we have been working on it for five years.

If this stuff interests you at all, I’d highly recommend reading Richard Rhodes’ The Making of the Atomic Bomb. (via real future)

Update: The complete transcripts of the secret recordings were collected into a book called Hitler’s Uranium Club. The story of the Allied sabotage of a key element in producing a German bomb is told in Neal Bascomb’s The Winter Fortress. Alex Wellerstein writes that the Nazis didn’t know very much about the Manhattan Project. (via @CarnegieDeputy, @hellbox, @AtomicHeritage)

Meet the nano sapiens

posted by Jason Kottke   Sep 28, 2016

Nano Sapiens

In a 1959 talk at Caltech titled There’s Plenty of Room at the Bottom, Richard Feynman outlined a new field of study in physics: nanotechnology. He argued there was much to be explored in the realm of the very small — information storage, more powerful microscopes, biological research, computing — and that that exploration would be enormously useful.

I would like to describe a field, in which little has been done, but in which an enormous amount can be done in principle. This field is not quite the same as the others in that it will not tell us much of fundamental physics (in the sense of, “What are the strange particles?”) but it is more like solid-state physics in the sense that it might tell us much of great interest about the strange phenomena that occur in complex situations. Furthermore, a point that is most important is that it would have an enormous number of technical applications.

In a reaction to Elon Musk’s plan to colonize Mars, David Galbraith suggests there might be plenty of room at the bottom for human civilization as well. Don’t colonize Mars, miniaturize humanity. Create nano sapiens.

If we think of this as a design problem, there is a much better solution. Instead of expanding our environment to another planet at massive cost, why wouldn’t we miniaturise ourselves so we can expand without increasing our habitat or energy requirements, but still maintain our ability to create culture and knowledge, via information exchange.

The history of information technology and the preservation of Moore’s law has been driven by exactly this phenomenon of miniaturization. So why shouldn’t the same apply to the post technological evolution of humankind as it approaches the hypothetical ‘singularity’ and the potential ability for us to be physically embodied in silicon rather than carbon form.

When humans get smaller, the world and its resources get bigger. We’d live in smaller houses, drive smaller cars that use less gas, eat less food, etc. It wouldn’t even take much to realize gains from a Honey, I Shrunk Humanity scheme: because of scaling laws, a height/weight proportional human maxing out at 3 feet tall would not use half the resources of a 6-foot human but would use somewhere between 1/4 and 1/8 of the resources, depending on whether the resource varied with volume or surface area. Six-inch-tall humans would potentially use 1728 times fewer resources.1

Galbraith also speculates about nano aliens as a possible explanation for the Fermi paradox:

Interestingly, the same rules of energy use and distance between planets and stars would apply to any extraterrestrial aliens, so one possible explanation for the Fermi paradox is that we all get smaller and less visible as we get more technologically advanced. Rather than favoring interstellar colonization with its mind boggling distances which are impossible to communicate across within the lifetimes of individuals (and therefore impossible to hold together in any meaningful way as a civilization) perhaps advanced civilizations stick to their home planets but just get more efficient to be sustainable.

Humans are explorers. Curiosity about new worlds and ideas is one of humanity’s defining traits. One of the most striking things about the Eames’ Powers of Ten video is how similar outer space and inner space look — vast distances punctuated occasionally by matter. What if, instead of using more and more energy exploring planets, stars, and galaxies across larger and larger distances (the first half of the Eames’ video), we went the other way and focused on using less energy to explore cells, molecules, and atoms across smaller and smaller distances. It wouldn’t be so much giving up human space exploration as it would be exchanging it for a very similar and more accessible exploration of the molecular and atomic realm. There is, after all, plenty of room down there.

Update: I knew the responses to this would be good. Galbraith’s idea has a name: the transcension hypothesis, formulated by the aptly named John Smart. Jason Silva explains in this video:

The transcension hypothesis proposes that a universal process of evolutionary development guides all sufficiently advanced civilizations into what may be called “inner space,” a computationally optimal domain of increasingly dense, productive, miniaturized, and efficient scales of space, time, energy, and matter, and eventually, to a black-hole-like destination. Transcension as a developmental destiny might also contribute to the solution to the Fermi paradox, the question of why we have not seen evidence of or received beacons from intelligent civilizations.

Before we get there, however, there are a few challenges we need to overcome, as Joe Hanson explains in The Small Problem With Shrinking Ourselves:

As it often seems in such matters, science follows science fiction here. In Kurt Vonnegut’s Slapstick (Amazon), the Chinese miniaturize themselves in response to the Earth’s decreasing resources.

In the meantime, Western civilization is nearing collapse as oil runs out, and the Chinese are making vast leaps forward by miniaturizing themselves and training groups of hundreds to think as one. Eventually, the miniaturization proceeds to the point that they become so small that they cause a plague among those who accidentally inhale them, ultimately destroying Western civilization beyond repair.

Blood Music by Greg Bear (Amazon) has a nano-civilization theme:

Through infection, conversion and assimilation of humans and other organisms the cells eventually aggregate most of the biosphere of North America into a region seven thousand kilometres wide. This civilization, which incorporates both the evolved noocytes and recently assimilated conventional humans, is eventually forced to abandon the normal plane of existence in favor of one in which thought does not require a physical substrate.

James Blish’s short story Surface Tension tells the tale of microscopic human colonists. (via @harryh, @mariosaldana, @EndlessForms, @vanjacosic, @chumunculus)

Update: For some years, director Alexander Payne has been working on a film called Downsizing:

“Downsizing,” after all, starts off in Norway and takes place in a not-too-distant future where humans are now able to shrink themselves to 1/8 their size as a means to battle over-consumption and the rapid depletion of earth’s natural resources, thanks to enlightened hippie-like Scandinavian scientists. “Smalls” get small, then become members of small cities (the main characters moves to a city called Leisureland) protected by large nets (keeps the bugs out) and built like Disney’s Celebration Town (all planned, all pre-fabricated). Small people cash-in their savings and retire small; 1 big dollar equals 500 small dollars. Smalls live on less food, less land, and produce less trash. As the story progresses, Americans are free to get small, but in Europe, where resources are beginning to truly run out, legislation arises suggesting 40% of the population get shrunk (whether they like it or not). For the big, the world grows smaller and scarier; for the small, the world grows bigger and scarier.

Word is that Matt Damon will play the lead role. Mr. Payne, consider a title change to “Nano Sapiens”? (via @stephenosberg)

Photo by Poy.

  1. This is not a straightforward matter however. The 6-inch human wouldn’t eat 1728 times less food…that would mean you could live on a Big Mac for a year. Small animals often eat a significant percentage of their body weights each day, which normal-sized humans never approach. For example, according to this chart a grey squirrel weighs about 21 oz and eats about 1.6 oz of food, the equivalent of a 180-pound human eating about 14 pounds of food a day.

Musk: SpaceX will start colonizing Mars in 7 years

posted by Jason Kottke   Sep 28, 2016

Yesterday, Elon Musk shared SpaceX’s plan for colonizing Mars. Gizmodo has a good overview of the plan.

SpaceX plans to build a “self-sustaining city” on Mars, according to its founder Elon Musk. But, while we now know a lot more about how SpaceX plans to get to Mars, details about how people will actually survive up there remain sketchy.

Musk dropped the news on Tuesday during an address at the International Astronautical Congress meeting in Guadalajara, Mexico, where he had promised to reveal how the company planned to send people to live on Mars.

“I don’t have an immediate doomsday prophecy,” said Musk, but he noted that he saw only two possible paths forward. “One path is to stay on Earth forever, and there will be some extinction event. The alternative is to become a multi-planetary species, which I hope you will agree is the right way to go.”

Musk says that human flights to Mars could start as soon as 2023. So audacious, I love it. I am so rooting for him to pull this off.

Update: Wait But Why has a characteristically entertaining and informative piece about SpaceX’s Big Fucking Rocket.

“It’s so mind-blowing. It blows my mind, and I see it every week.”

Elon’s pumped. And when you learn about the big fucking rocket he’s building, you’ll understand why.

First, let’s absorb the challenge at hand. It’s often said that space is hard. To this day, only a few hundred people have been in space, only a few countries have the ability to launch something into space, and the history of human space travel is littered with tragic launch failures. Firing something super heavy and delicate and full of explosive liquid up through the atmosphere without anything going wrong is incredibly hard.

But when we talk about humans going into space, we’re talking mostly about humans going into Low Earth Orbit, a layer of space between 100 and 1,200 miles above the ground — and normally, they’re headed only 250 miles up to the International Space Station. The only time humans have gone farther were the small handful of Americans who made it out to the moon in the 1960s, traveling about 250,000 miles away.

When Earth and Mars are at their closest, Mars is somewhere between 34 and 60 million miles away — about 200 times farther away than the moon and about 200,000 times farther away than the ISS.

The moon is just over one light second away.

Mars is more than three light minutes away.

Mars is far.

The mirror spider has built-in invisibility shield capabilities

posted by Jason Kottke   Sep 27, 2016

Mirror Spider

Mirror Spider

Photographer Nicky Bay has been documenting an arachnid he calls the mirror spider for past few years. He’s noticed that when the spider feels threatened, it can shift the mirrored plates on its abdomen to reveal itself and make itself look bigger, like a cloaked Klingon ship uncloaking for battle.

For several years, I have been observing the odd behavior of the Mirror Spider (Thwaitesia sp.) where the “silver-plates” on the abdomen seem to shrink when the spider is agitated (or perhaps threatened), revealing the actual abdomen. At rest, the silver plates expand and the spaces between the plates close up to become an almost uniform reflective surface.

Many animals have evolved the ability to camouflage themselves and I’d speculate that is what’s happened to the mirror spider. The mirrored surface reflects the spider’s surroundings and turns it somewhat invisible to potential predators. The mirror system is more complex than an abdomen matching the green of a particular plant, but is also more adaptive — the mirror works equally well on green leaves, brown branches, and black soil. (via colossal)

Update: I misread Bay’s explanation of the spider’s response to threats and have corrected it above. I previously stated “that when the spider feels threatened, it can shift the mirrored plates on its abdomen to make itself appear more reflective”, which is exactly wrong. (via @RLHeppner/status/780921795335581696)

Should we use CRISPR to engineer mosquitoes incapable of transmitting malaria?

posted by Jason Kottke   Sep 21, 2016

Thousands of people die every day from malaria, a disease that is transmitted to humans solely through mosquitoes. With CRISPR, scientists can easily genetically engineer mosquitoes incapable of transmitting malaria and using a technique called gene drive, they can force that genetic change into the native mosquito population. So, should we do it?

A timeline of the Earth’s average temperature

posted by Jason Kottke   Sep 13, 2016

XKCD Climate Change

From XKCD, a typically fine illustration of climate change since the last ice age ~20,000 years ago.

When people say “the climate has changed before”, these are the kinds of changes they’re talking about.

And then in the alt text on the image:

[After setting your car on fire] Listen, your car’s temperature has changed before.

The chart is a perfect use of scale to illustrate a point about what the data actually shows. Tufte would be proud.

Update: Tufte is proud. (via @pixelcult)

Watch time lapse videos of bacteria evolving drug resistance

posted by Jason Kottke   Sep 09, 2016

Researchers at Harvard have come up with a novel way of studying how bacteria evolve to become drug resistant. They set up a large petri dish about the same shape as a football field with no antibiotics in the end zones and increasingly higher doses of antibiotics toward the center. They placed some bacteria in both end zones and filmed the results as the bacteria worked its way toward the center of the field, evolving drug resistance as it went. Ed Yong explains:

What you’re seeing in the movie is a vivid depiction of a very real problem. Disease-causing bacteria and other microbes are increasingly evolving to resist our drugs; by 2050, these impervious infections could potentially kill ten million people a year. The problem of drug-resistant infections is terrifying but also abstract; by their nature, microbes are invisible to the naked eye, and the process by which they defy our drugs is even harder to visualise.

But now you can: just watch that video again. You’re seeing evolution in action. You’re watching living things facing down new challenges, dying, competing, thriving, invading, and adapting — all in a two-minute movie.

Watch the video…it’s wild. What’s most interesting — or scary as hell — is that once the drug resistance gets going, it builds up a pretty good momentum. There’s a pause at the first boundary as the evolutionary process blindly hammers away at the problem, but after the bacteria “learn” drug resistance, the further barriers are breached much more quickly, even before the previous zones are fully populated.

Scientists discover giraffes are actually four separate species

posted by Jason Kottke   Sep 09, 2016

Giraffe Species

Suddenly, there are four species of giraffe now. Previously there was only one. Scientists have analyzed the genetic code of hundreds of giraffes in Africa and found much variation in their DNA, enough to split one species into four.

Some of the differences were as large or larger than the differences between brown bears and polar bears.

Despite their similar appearances, members of the different species don’t appear to mate with each other. It’s amazing that scientists didn’t know this until now.

The Kingdom of Speech

posted by Jason Kottke   Aug 29, 2016

Kingdom Of Speech

In his new book The Kingdom of Speech, Tom Wolfe argues that speech and not evolution is responsible for the many achievements of humans. Wolfe, the author of The Right Stuff and The Electric Kool-Aid Acid Test, went on NPR the other day to talk about the book. This comment about Darwin’s view of speech stuck out (emphasis mine):

He could not figure out what it was. He assumed, because of his theory, that everything evolved from animals. And didn’t even include it in his theory, language, until he decided that it came from our imitation of the cries of birds. And I think it’s misleading to say that human beings evolved from animals — actually, nobody knows whether they did or not. There are very few physical signs, aside from the general resemblance of apes and humans. The big evolution, if you want to call it that, is that this one species, Homo sapiens, came up with this ingenious trick, which is language.

It’s one thing to say that speech did not evolve from the utterances of previous animals and was instead invented by humans, but it’s quite another to assert that humans did not evolve from animals at all.1 Gonna be fun to sit back and watch the controversy roil on this one. (via @JossFong who said “lazy saturday, just listening to @NPR when ….. WHAT”)

  1. Q: Where does Tom Wolfe get his water?

    A: From a “Well, actually…”